
Sum of Separable Functions in Machine Learning

Jochen Garcke ∗
Technische Universität Berlin

Institut für Mathematik, Sekretariat MA 3-3
Straße des 17. Juni 136, 10623 Berlin, Germany

garcke@math.tu-berlin.de

1 Sum of Separable Functions in Machine Learning

We consider the basic binary classification problem, where one starts from a set of labeled data,

D =
{
(xj , yj)

}N
j=1

=
{
(xj1, · · · , x

j
d; yj)

}N

j=1
, (1)

with yi ∈ {−1, 1} labeling the two classes and x a d-dimensional feature vector. There exist nu-
merous algorithms for classification (see e.g. [3, 7]). Function based methods for classifying data
construct a function g(x) such that the sign of g(xj) matches yj for the given data, and the sign of
g(x) correctly predicts y for other x. Since the data may contain errors, or may simply not provide
enough information, one cannot expect to completely satisfy this goal, so one uses suitable loss
functions with the aim to minimise the classification error rates.

An approach using functions in high dimensions has to address the curse of dimensionality, where
the complexity of the function representation, which is the number of unknowns, typically grows
exponentially with the dimensions. One of the reasons for the success of support vector machines is
the use of a data centered function representation using kernels. Here the dimensionality turns up in
the complexity of the kernel computation and not in the complexity of the function representation
which essentially only depends on the number of data.

In the last years numerical approaches using function representations based on a sparse tensor prod-
uct approach were succesfully used in high dimensions [2, 4]. These approaches are based, in an
abstract fashion, on the approximation by a sum of separable functions,

g(x) =

r∑
l=1

sl

d∏
i=1

gli(xi) , (2)

which is very closely related to low rank tensor decomposition, see [8] for a review and further
references. The number of terms r is called the (separation) rank. Note that the coefficients sl are
solely for later convenience, so that one has ‖gli‖ = 1.

Following [1] we use sums of separable functions of the form (2) but without constraints such as
orthogonality or positivity on the gli. The resulting nonlinear approximation method is called a sep-
arated representation [2]. The functions gli may be constrained to a subspace, but are not restricted
to come from a particular basis set. This extra freedom allows one to find good approximations with
surprisingly small r, and reveals a much richer structure than one would believe beforehand. Al-
though there are at present no useful theorems on the size r needed for a general class of functions,
there are examples where removing constraints produces expansions that are exponentially more ef-
ficient than one would expect a priori, i.e. r = d instead of 2d or r = log d instead of d, examples
are discussed in detail in [2].

∗based on joint work with Gregory Beylkin and Martin Mohlenkamp

1



We use a multi-scale basis of tent functions for the gli but one could choose any function space of
(finite) dimension M , e.g., polynomials of some degree, splines, wavelets, etc. as well. This space
may be different for each term l in the sum, each attribute i, and in general also for each (l, i) pair.

To use the method for classification suitable loss functions need to be used. We employ log-
likelihood estimation, which in the sense of probability estimation is more appropriate and sta-
tistically sound for classification than a least squares approach [3, 7], and the hinge loss used for
support vector machines in a smooth variant introduced in [5].

Since these loss functions are non-quadratic we need to minimise using non-linear minimisation al-
gorithms. We did experiments with the quasi-Newton method BFGS, a non-linear CG-method, and
a trust-region method (see e.g. [11]). We investigated both an alternating minimising procedure and
a global minimisation which optimises in all dimensions simultaneously, but in our experiments the
alternating minimisation procedure achieves much better results than the global minimisation pro-
cedure, so we concentrate on the alternating procedure. We expect that with a detailed investigation
of the minimisation problem and an adaption of the algorithm to the specific problem the global
minimisation will perform better.

In any case we need to formulate a suitable regularised problem. This is necessary to avoid over-
fitting, but also for numerical stabilisation. Since we employ multi-scale linear functions as our
basis for g(x) we can only use first derivatives in the regularisation. We use ‖∇g(x)‖2 as a sim-
ple regularisation term, denoted by ∇dD in the following. As an alternative we also investigate
the regularisation of each gli(x) by ‖∇(gli(x))‖2. Due to the orthogonality of the basis we have∫
φlk
′
(x)φl

k̃

′
(x)dx = δkk̃γ

l
k, where γlk depends on the size of the support of φlk. We use ∇gli to

indicate this regularisation (which is more like numerical stabilisation).

An investigation of the alternating procedure shows that the complexity is

O(K(dr2M2 + drMN)S). (3)

for the ∇gli regularisation, here we denote the number of BFGS iterations by S and the number of
alternating iterations is K. The cost is linear in both d and N , and so the method is feasible for large
data sets in high dimensions.

Using the regularisation∇dD we observe a complexity of

O(K[(dr2M2 + drMN)S + d3r2M2]). (4)

Again linear in N , but in parts cubic in d, although the inner non-linear solver is linear in d. Never-
theless, the complexity still suggests the method for large data sets in high dimensions.

We compare against results from the study [9], where several classification methods were bench-
marked. The separation rank r, the discretisation level of the multi-scale basis (which correlates with
the basis size M ) and the size of the regularisation parameter were selected using cross-validation.
Note that depending on the problem we used up to level 4 of the multi-scale basis and rank r = 7,
although often r ≤ 4 was sufficient.

The simple local regularisation method performs slightly better than the global regularisation. For
the twonorm, bupa liver and credit data set it results in smaller misclassification rates, while for the
spirals and threenorm data set the global regularisation method is better. In particular for some of the
real data the minimisation procedure had problems to converge for the global regularisation; again,
better adapted non-linear solution strategies might improve the results. The good performance of the
simpler local regularisation is an indication that the limitation to a discrete function representation
has a large effect in the avoidance of overfitting, known as regularisation by projection in other
fields [6, 10].

In comparison to the 17 other methods our approach achieves very competitive results, here we look
at the median as is done in [9]. For all data sets at least one variant of our approach is in the top
five and for eight of the data sets we are in the top three. For six data sets, the majority, at least one
version of our procedure achieved better results than a support vector machine, which was the best
method in the referenced study [9].

2



Table 1: Results on synthetic data from the study [9]. We give the mean (with standard deviation)
and median (with inter-quartile range) for the best results from [9], our approach, and our position in
comparison to all 17 approaches used. We use log likelihood estimation (LL), the huberised hinge
loss (LH ) and both forms of regularisation.

LL,∇gli LH , ∇gli LL,∇dD LH ,∇dD
data set best other error pos error pos error pos error pos

mean 2.66 svm 2.26 1 2.39 1 2.22 1 2.45 1
CIRCLE (0.44) (0.44) (0.46) (0.47)

median 2.50 svm 2.00 1 2.10 1 1.95 1 2.30 1
(0.49) (0.41) (0.62) (0.61) (0.80)

mean 0.17 nn 1.04 3 1.19 3 0.25 2 1.03 3
SPIRALS (0.18) (0.22) (0.10) (0.22)

median 0.10 nn 0.90 3 1.10 3 0.20 2 0.75 3
(0.07) (0.22) (0.31) (0.16) (0.29)

mean 2.82 svm 3.61 5 4.08 5 12.04 17 6.37 12
TWONORM (0.34) (0.34) (7.85) (1.34)

median 2.70 svm 3.40 5 3.85 5 5.50 10 5.90 11
(0.20) (0.40) (0.54) (8.93) (0.59)

mean 14.17 lvq 18.94 9 19.21 9 14.45 2 15.62 2
THREENORM (0.98) (0.60) (0.40) (0.69)

median 13.70 lvq 18.95 8 19.10 9 14.40 2 15.40 2
(0.77) (0.98) (0.50) (0.79) (1.22)

mean 3.58 svm 5.44 2 5.92 2 4.85 2 5.43 2
RINGNORM (0.58) (2.64) (0.31) (0.32)

median 2.90 svm 4.80 2 4.90 2 4.70 2 5.30 2
(0.70) (0.75) (0.61) (0.33) (0.31)

References

[1] G. Beylkin, J. Garcke, and M. J. Mohlenkamp. Multivariate regression and machine learning
with sums of separable functions. SIAM Journal on Scientific Computing, 31(3):1840–1857,
2009.

[2] G. Beylkin and M. J. Mohlenkamp. Algorithms for numerical analysis in high dimensions.
SIAM J. Sci. Comput., 26(6):2133–2159, July 2005.

[3] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.
[4] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.
[5] O. Chapelle. Training a support vector machine in the primal. Neural Computation,

19(5):1155–1178, 2007.
[6] H. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer, 1996.
[7] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,

2001.
[8] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,

51(3):455–500, September 2009.
[9] D. Meyer, F. Leisch, and K. Hornik. The support vector machine under test. Neurocomputing,

55:169–186, 2003.
[10] F. Natterer. Regularisierung schlecht gestellter Probleme durch Projektionsverfahren. Numer.

Math., 28:329–341, 1977.
[11] J. Nocedal and S. J. Wright. Numerical optimization. 2nd ed. Springer, 2006.

3


